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Fig. 1: On consumer VR headsets, oblique mouth views and a large image do-
main gap hinder high quality face registration. As shown, the subtle lip shapes
and jaw movement are often hardly observed. Under this setting, our method is ca-
pable of efficiently and accurately registering facial expression and head pose of the
photorealisitic avatars [7] of unseen identities.

Abstract. Virtual Reality (VR) bares promise of social interactions
that can feel more immersive than other media. Key to this is the ability
to accurately animate a personalized photorealistic avatar, and hence the
acquisition of the labels for headset-mounted camera (HMC) images need
to be efficient and accurate, while wearing a VR headset. This is challeng-
ing due to oblique camera views and differences in image modality. In this
work, we first show that the domain gap between the avatar and HMC
images is one of the primary sources of difficulty, where a transformer-
based architecture achieves high accuracy on domain-consistent data, but
degrades when the domain-gap is re-introduced. Building on this finding,
we propose a system split into two parts: an iterative refinement module
that takes in-domain inputs, and a generic avatar-guided image-to-image
domain transfer module conditioned on current estimates. These two
modules reinforce each other: domain transfer becomes easier when close-
to-groundtruth examples are shown, and better domain-gap removal in
turn improves the registration. Our system obviates the need for costly
offline optimization, and produces online registration of higher quality
than direct regression method. We validate the accuracy and efficiency
of our approach through extensive experiments on a commodity headset,
demonstrating significant improvements over these baselines. To stimu-
late further research in this direction, we make our large-scale dataset
and code publicly available.
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1 Introduction

Photorealistic avatar creation has seen much progress in recent years. Driven by
advances in neural representations and neural rendering |2},24,25,|33/(34], highly
accurate representations of individuals can now be generated even from limited
captures such as phone scans [7| or monocular videos [2,[15] while supporting
real time rendering for interactive applications [29,[36]. Photorealistic quality is
achieved by learning a universal prior model [7] on human appearance, which can
be personalized to a novel user [7l{15]. An emerging use case for such avatars is for
enabling social interactions in Virtual Reality (VR). This application presents a
particular problem where the user’s face is typically occluded from the environ-
ment by the VR headset. As such, it relies on headset-mounted cameras (HMCs)
to animate a user’s avatar. While accurate results have been demonstrated, they
have been restricted to person-specific cases, where correspondence pairs be-
tween the avatar and HMC images are obtained using additional elaborate cap-
ture rigs |36]. Highly accurate tracking in the more general case remains an open
problem, due to the need of specializing a generic encoder to users’ personalized
avatars, while user is wearing a VR headset. Although fast adaptation methods
are well studied [4,[9,/16], the unsolved challenge here is to obtain high quality
image-label pair, especially under oblique camera angles, time constraints, and
the image domain difference between HMC images and avatar renderings.

In this work, we demonstrate that generic facial expression registration can
be both accurate and efficient on unseen identities and challenging viewing an-
gles. For this, we first demonstrate that accurate results are possible when the
modalities of the headset-mounted cameras (typically infrared) and the user’s
avatar match, using a novel transformer-based network that iteratively refines
expression estimation and head pose, solely from image features. Our method
assumes no requirement on avatar to provide landmarks, which are not reliable
under oblique HMC views. Building on this finding, we propose to learn a cross-
identity style transfer function from the camera’s domain to that of the avatar.
The core challenge here lies in the high fidelity requirement of the style trans-
fer due to the challenging viewpoints of the face presented by headset mounted
cameras; even a few pixels error can lead to significant effects in the estimated
avatar’s expression. To resolve this, a key design of our method is to leverage an
iterative expression and head pose estimation, as well as a style transfer module,
which reinforce each other. On one hand, given a higher-quality style transfer
module, the iterative refinement process gets increasingly easier. On the other
hand, when a refined expression and pose estimation is closer to groundtruth,
the style transfer network can easily reason locally using the input HMC images
(conditioned on multiple reference avatar renderings) to remove the domain gap.

To demonstrate the efficacy of our approach, we perform experiments on a
dataset of 208 identities, each captured in a multiview capture system [24] as well
as a modified QuestPro headset [27], where the latter was used to provide ground
truth correspondence between the driving cameras and the avatars. Compared to
direct regression method, our iterative construction shows significantly improved
robustness against novel appearance variations in unseen identities.
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In summary, the contribution of this work include:

— A demonstration that accurate and efficient generic face registration on a
neural rendering face model is achievable under matching camera-avatar do-
mains, without relying on 3D geometry.

— A generalizing style transfer network that precisely maintains facial expres-
sion on unseen identities, conditioned on photorealistic avatar renderings.

— Overall, a method to establish high-fidelity image-label pairs for unseen per-
sonalized avatars under time constraints and oblique viewing angles.

The remaining of the paper is structured as follows. In the next section, a liter-
ature review is presented. Then, in we outline our method for generic facial
expression estimation. In §4 we demonstrate the efficacy of our approach with
extensive experiments. We conclude in §5| with a discussion of future work.

2 Related Work

2.1 VR Face Tracking

While face tracking is a long studied problem, tracking faces of VR users from
head mounted cameras (HMCs) poses an unique challenge. The difficulty mainly
comes from restrictions in camera placement and occlusion caused by the head-
set. Sensor images only afford oblique and partially overlapping views of facial
parts. Previous work explored different ways to circumvent these difficulties.
In [21], a camera was attached on a protruding mount to acquire a frontal view
of the lower face, but with a non-ergonomic hardware design. In [35], the outside-
in third-person view camera limits the range of a user’s head pose. Both of these
works rely on RGBD sensors to directly register the lower face with a geometry-
only model. To reduce hardware requirements, [28| used a single RGB sensor for
the lower face and performed direct regression of blendshape coefficients. The
training dataset comprised of subjects performing a predefined set of expres-
sions and sentences that had associated artist-generated blendshape coefficients.
The inconsistencies between subject’s performances with the blendshape-labeled
animation limited animation fidelity.

A VR face tracking system on a consumer headset (Oculus Rift) with pho-
toreaslitic avatars [24] was firstly presented in [36]. They introduced two novel-
ties: (1) The concept of a training- and tracking-headset, where the former has
a super-set of cameras of the latter. After training labels were obtained from
the training headset, the auxiliary views from better positioned cameras can be
discarded, and a regression model taking only tracking headset’s input was built.
They also employed (2) analysis-by-synthesis with differentiable rendering and
style transfer to precisely register parameterized photorealistic face models to
HMC images, bridging the RGB-to-IR domain gap. The approach was extended
in [33] via jointly learning the style-transfer and registration together, instead
of an independent CycleGAN-based module. Although highly accurate driving
was achieved, both [36] and [33| relied on person-specific models, the registra-
tion process required hours to days of training, and required the training headset
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with auxiliary camera views to produce ground truth. As such, they cannot be
used in a live setting where speed is required and only cameras on consumer
headsets are available. In this work, we demonstrate that a system trained on a
pre-registered dataset of multiple identities can generalize well to unseen identi-
ties’ HMC captures within seconds. These efficiently generated image-label pairs
can later be used to adapt a generic realtime expression regressor and make the
animation more precise.

2.2 Image Style Transfer

The goal of image style transfer is to render an image in a target style domain
provided by conditioning information, while retaining semantic and structural
content from an input’s content. Convolutional neural features started to be
utilized [14] to encode content and style information. Pix2pix |18] learns condi-
tional GANs along with L; image loss to encourage high-frequency sharpness,
with an assumption of availability of paired ground truth. To alleviate the dif-
ficulty of acquiring paired images, CycleGAN [41] introduced the concept of
cycle-consistency, but each model is only trained for a specific pair of domains,
and suffers from semantic shifts between input and output. StarGAN [10] extends
the concept to a fixed set of predefined domains. For more continuous control,
many explored text conditioning [3]| or images conditioning |1}8}[111/23[37]. These
settings usually have information imbalance between input and output space,
where optimal output might not be unique. In this work, given a latent-space
controlled face avatar |7, along with a ground-truth generation method |[33],
our style transfer problem can simply be directly supervised, with conditioning
images rendered from the avatar to address the imbalance information problem.

2.3 Learning-based Iterative Face Registration

A common approach for high-precision face tracking involves a cascade of regres-
sors that use image features extracted from increasingly registered geometry. One
of the first methods to use this approach used simple linear models raw image
pixels [32], which was extended by using SIFT features |39]. Later methods used
more powerful regressors, such as binary trees [6,/19] and incorporated the 3D
shape representation into the formulation. Efficiency could be achieved by binary
features and linear models [31].

While these face tracking methods use current estimates of geometry to ex-
tract relevant features from images, similar cascade architectures have also been
explored for general detection and registration. In those works, instead of extract-
ing features using current estimates of geometry, the input data is augmented
with renderings of the current estimate of geometry, which simplifies the back-
bone of the regressors in leveraging modern convolutional deep learning architec-
tures. For example, Cascade Pose Regression [12| draws 2D Gaussians centered
at the current estimates of body keypoints, which are concatenated with the orig-
inal input, acting as a kind of soft attention map. Similar design in [5] was used
for 3D heatmap prediction. Xia et al. |38] applied vision transformer [13] to face
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Fig. 2: Examples of HMC images and corresponding ground truth expression rendered
on their avatars from the offline registration method , which utilizes augmented
cameras with better frontal views (highlighted in green). In this work, we aim to ef-
ficiently register faces using cameras on consumer headsets, which only have oblique
views (highlighted in red). In such views, information about subtle expressions (e.g.,
lip movements) are often covered by very few pixels or even not visible.

alignment with landmark queries. In this work, we demonstrate a transformer-
based network that doesn’t require any guidance from landmark to predict pre-
cise corrections of head pose and expression from multiview images.

3 Method

We aim to register the avatar face model presented in to multi-view HMC
images denoted H = {H.}.cc, where each camera view H, € R"*" is a
monochrome infrared (IR) image and C'is the set of available cameras on a con-
sumer VR headset (in this work, we primarily focus on Meta’s Quest Pro ,
see the supplementary material). They comprise a patchwork of non-overlapping
views between each side of the upper and lower face. Some examples are shown
in Fig. 2] Due to challenging camera angles and headset donning variations, it is
difficult for the subtle facial expressions to be accurately recognized by machine
learning models (e.g., see Fig. @

Setting. We denote the avatar’s decoder model from |7] as D. Following the same
setting as in , given an input expression code z € R?%6, viewpoint v € RS,
and identity information of the i*® subject, I, the decoder is able to render this
subject’s avatar from the designated viewpoint by R = D(z,v|I") € RM*w*3,
Specifically, when we use v = v,; i.e., the viewpoint of a particular head-mounted
camera (HMC), we’ll obtain R, = D(z,v.|[I') € R"***3 which has the same
view as the corresponding H,. € R"*", except the latter is monochromatic. Fol-
lowing , the identity information I’ for a specific identity ¢ is provided as
multi-scale untied bias maps to the decoder neural network. In this paper, we
assume I’ is available for both training and testing identities, either from the
lightstage or a phone scanningﬂ and that the calibrations of all head-mounted
cameras are known. We utilize the method in to establish groundtruth HMC

3 In this work we differentiate between unseen identities for avatar generation vs.
unseen identities for HMC driving. We always assume an avatar for a new identity
is already available through prior works, and evaluate the performance of expression
estimation methods on unseen HMC images of that identity.
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image-to-(z,v) correspondences, which relies on an identity-specific costly opti-
mization process and an augmented additional camera set, C’, which provides
enhanced visibility. The examples are highlighted in the green boxes in Fig. 2]
Our goal in this work is to estimate the same optimal z and v for new identi-
ties leveraging the avatar model (i.e., registration), while using only the original
camera set C, highlighted in red boxes in Fig. 2]

3.1 A Simplified Case: Matching Input Domain

Accurate VR face registration entails exact alignment between H. and R, for
each head-mounted camera c. However, a vital challenge here is their enormous
domain gap: H = {H.}.cc are monochrome infrared images with nearfield light-
ing and strong shadows, while R = {R.}.cc are renderings of an avatar built
from uniformly lit colored images in the visible spectrum. [33}[36] utilized a style
transfer network to bridge this gap in a identity-specific setting. To simplify
the problem in the generic, multi-identity case, we first ask the question: what
performance is possible when there is no domain difference? To study this, we
replace H with Ry = D(z4¢,v4:) obtained from the costly method in [33]| with
augmented cameras. Ry, can be seen as a perfectly style transferred result from
H to the 3D avatar rendering space, that exactly retains expression. To predict
(2gt,vgt) from Rg, a naive way is to build a regression CNN which can be made
extremely efficient such as MobileNetV3 |17]. Alternatively, given D is differen-
tiable and the inputs are in the same domain, another straightforward approach
is to optimize (z,v) to fit to Ry using pixel-wise image losses. As we show in
Table[I] the regression model is extremely lightweight but fails to generalize well;
whereas this offline method (unsurprisingly) generates low error, at the cost of
extremely long time to converge. Note that despite the simplification we make
on the input domain difference (i.e., assuming access to Ry rather than H),
the registration is still challenging due to the inherent oblique viewing angles,
headset donning variations and the need to generalize to unseen identities.

In contrast, we argue that a carefully designed function that leverages avatar
model (i.e., D) information, which we denote as Fo(+|D), achieves a good balance:
(1) it is feed-forward (no optimization needed for unseen identities) so its speed
can afford online usage; (2) it utilizes the renderings of D as a feedback to
compare with input H, and minimize misalignment. Before we describe Fy in
§ B3] we report the results of aforementioned methods under this simplified
setting in Table [T}

Specifically, we show that Fy can achieve performance approaching that of of-
fline registration [33]. In contrast, naive direct regressions perform substantially
worse, even with the augmented set of cameras. This highlights the importance
of conditioning face registration learning with information about the target iden-
tity’s avatar (in our case, D). But importantly, when reverting back to the real
problem, by replacing R, with H, the performance of 7y also degrades signifi-
cantly. This observation demonstrates the challenge posed by input domain gap
difference, and motivates us to decouple style transfer problem from registration,
as we describe next.
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Table 1: Registration accuracy in a simplified setting. The errors are averaged across
all frames in the test set. Augmented cameras means the use of camera set C’ (which
has better lower-face visibility) instead of C'. Frontal Image L; describes expression
prediction error, while rotation and translation errors describe the headpose predic-
tion error. All methods are compared against groundtruth generated by the offline
method [33] trained with augmented cameras. *Note that offline method below (col-
ored in ) is computed without augmented cameras, and is impractical due to the
long convergence time.

Aug. Input Frontal Rot. Err. Trans. Err. Speed
Cams P Image L1 (deg.) (mm) P
*

Regression X Ry 2.920 3.150 2.900 7ms
Regression v Ry 2.902 3.031 3.090 Tms
Ours Fo X Ry 1.652 0.660 0.618 0.4sec
Ours Fo v Ry 1.462 0.636 0.598 0.4sec
Ours Fy ‘ X H 2.851 1.249 1.068 0.4sec

3.2 Overall Design

In light of the observation in we propose to decouple the problem into the
learning of two modules: an iterative refinement module, F, and a style trans-
fer module, S. The goal of F is to produce an iterative update to the estimate
expression z and headpose v of a given frame. However, as Table [I] shows, con-
ditioning on avatar model D alone is not sufficient; good performance of such
F relies critically on closing the gap between H and R,;. Therefore, module F
shall rely on style transfer module S for closing this monochromatic domain gap.
Specifically, in addition to raw HMC images H, we also feed a style transferred
version of them (denoted R), produced by S, as input to F. Intuitively, R should
then resemble avatar model D’s renderings with the same facial expression as in
H. (And as Table|l|shows, if R~ R, one can obtain really good registration.)
Differing from the common style transfer setting, here the conditioning infor-
mation that provides “style” to S is the entire personalized model D(-|I") itself.
As such, we have the options of providing various conditioning images to S by
choosing expression and viewpoints to render. Throughout experiments, we find
that selecting frames with values closer to (z4:, v4¢) improves the quality of S’s
style transfer output.

Therefore, a desirable mutual reinforcement is formed: the better S performs,
the lower the errors of F are on face registration; in turn, the better F performs,
the closer rendered conditioning images will be to the ground truth, simplifying
the problem for S. An initialization (zg,vo) = Fo(H) for this reinforcement
process can be provided by any model that directly works on monochromatic
inputs H. Fig. [3|illustrates the overall design of our system. In what follows, we
will describe the design of each module.
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Fig. 3: Overview of the method. We decouple the problem into an avatar-conditioned
image-to-image style transfer module S and a iterative refinement module F. Module
Fo initializes both modules by directly esimating on HMC input H.

3.3 Transformer-based Iterative Refinement Network

The role of the iterative refinement module, F, is to predict the updated param-
eters (zt+17vt+1) from input and current rendering;:

[Zt+17vt+1] =F (H>R7 Rt) , Ry = D(Zhvt) (1>

where € [1,T] is number of steps and R = S(H) is the style-transferred result
(see Fig. . F can reason about the misalignment between input H and current
rendering D(z;, v;), with the aid of S(H) to bridge the domain gap.

In Fig. 4] we show the hybrid-transformer [13] based architecture of F. For
each view ¢ € C, a shared CNN encodes the alignment information between
the current rendering R;. and input images H. along with style-transferred
images R, into a feature grid. After adding learnable grid positional encoding
and camera-view embedding, the grid features concatenated with the current
estimate (z;,v;) and are flattened into a sequence of tokens. These tokens are
processed by a transformer module with a learnable decoder query to output
(Azi, Avy), which is added to (z:,v:) to yield the new estimate for the next
iteration. We will show in §4.2) that this hybrid-transformer structure is a cru-
cial design choice for achieving generalization across identities. The transformer
layers help to fuse feature pyramid from multiple camera views while avoiding
model size explosion or information bottleneck. Fig. [5| shows the progression of
R; over the steps. This iterative refinement module is trained to minimize:

E}' = Afront£front + )\hmcﬁhmm (2)
where
T
['hmc = Z Z||D(zt7 vt,C|Ii) - D(th’ vgt7C|Ii)H1
t=1 ceC
T

‘Cfront = Z||D(zt7vfront|Ii) - D(tha vfront‘Ii)”l

t=1
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Fig. 5: Progression of iterative refinement in F: we show intermediate results D(z¢, v¢)
and corresponding error maps for each step t.

Here, vgont is a predefined frontal view of the rendered avatar (see Fig. [9)).
While Lyme encourages alignment between the predicted and groundtruth images
from HMC views, Lgont promotes an even reconstruction over the entire face to
combat effects of oblique viewing angles in the HMC images.

While Fy could be any module that works on HMC images H for the pur-
pose of providing {zg, v}, for consistency, we simply set Fy to also be iterative
refining, where the internal module is the same as F, except without R as input.

3.4 Avatar-conditioned Image-to-image Style Transfer

The goal of the style transfer module, S, is to directly transform raw IR in-
put images H into R that resembles the avatar rendering R, of that original
expression. Our setting differs from the methods in the literature in that our
style-transferred images need to recover identity-specific details including skin-
tone, freckles, etc., that are largely missing in the IR domain; meanwhile, the
illumination differences and oblique view angle across identities imply any mi-
nor changes in the inputs could map to a bigger change in the expression. These
issues make the style transfer problem ill-posed without highly detailed condi-
tioning.

To this end, we design a novel style transfer architecture that utilizes the
prior registration estimation given by Fy. Specifically, we can utilize F; that was
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trained directly on monochrome images H, to obtain an estimate of (2, vg) for
the current frame. Additionally, we choose M reference conditioning expressions:
(Zkyy s Zky, ) tO cover a range of reference expressions; e.g., mouth open, squint-
ing eyes, closed eyes, etc., which we find to significantly help mitigate ambiguities
in style-transferring extreme expressions (we show examples of these condition-
ing reference expressions in the supplementary material). Formally, given the
current frame HMC image H, we compute

R=S(H, (20, 2k, Zky, ), V0) - (3)

With a better estimation of (zg,vq) provided by Fy, these conditioning images
become closer to ground truth, thereby simplifying the style transfer learning
task of S.

Fig. |§| shows the UNet-based architecture of S. Given an estimate of (zg, vo),
conditioning images are generated from the same estimate and M other key
expressions, concatenated channel-wise and encoded by a U-Net encoder. Input
HMC image is encoded by a separate U-Net encoder. Sliding window based
attention [30] modules are used to fuse input features and conditioning features
to compensate for the misalignment between them. These fused features are
provided as the skip connection in the U-Net decoder to output style-transferred
image R. This style transfer module is trained with a simple image Ly loss:

Ls =R~ Ry (4)

4 Experiments

We perform experiments on a dataset of 208 identities (1M frames in total), each
captured in a lightstage [24] as well as a modified Quest-Pro headset |27] with
augmented camera views. The avatars are generated for all identities with a uni-
fied latent expression space using the method from |[7]. We utilize the extensive
offline registration pipeline in [33](with augmented camera set C’) to generate
high-quality labels. We held out 26 identities as validation set. We use T' = 3
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Table 2: Comparison of our approach (with style transfer and iterative refinement)
with direct regression and offline methods. The errors are the averages of all frames in
the test set. Augmented view means the use of camera set C’ instead of C. All methods
are comparing against groundtruth generated by the offline method [33| trained with
augmented cameras. *Note that offline methods below (colored in ) are computed
without augmented cameras, and are impractical due to the long convergence time.

Aug. Input Frontal  Rot. Err. Trans. Err. Speed
cams P Image L1 (deg.) (mm) P
*
*
Regression X H 2.956 2.850 2.802 7Tms
Regression X Ry 2.920 3.150 2.900 7ms
Regression v H 2.967 2.806 2.953 Tms
Regression v gt 2.902 3.031 3.090 Tms
Ours (F+S) X H 2.655 0.947 0.886 0.4s
Ours (F+S) v H 2.399 0.917 0.845 0.4s

refinement iterations during training and M = 4 key expressions to provide con-
ditioning images for style transfer, which is operating at 192 x 192 resolution. See
the supplementary material for more details on model architecture and training.

4.1 Comparison with Baselines

As discussed, there are two obvious types of methods to compare for general
face registration: (1) the same offline registration method in [33], but only
using the camera set C, performed individually on each validation identity’s
headset data. Since the training here is only across frames from that identity,
it has the advantage to overfit on the same identity. However, it also limits
the amount of prior knowledge it can leverage from other identities’ images. Its
performance anchors the challenge from camera angles, if computing time is not
limited. (2) Direct regression: using the same set of ground truth labels, we
train a MobileNetV3 [17] to directly regress HMC images to expression codes z.
This method represents an online model for a realtime system where iterative
feedback is not possible because the use of D is prohibited.

Table [2] summarizes the comparison. The offline method achieves good aver-
age frontal image loss. Albeit its high precision, it has common failure modes in
lower jaw and inner mouth, where the observation is poor, as shown in Fig. [7} In
comparison, our method could leverage the learning from cross-identity dataset,
producing a more uniformly distributed error. The offline method also suffers
from worse head pose estimation because its co-optimized style transfer could
compensate small errors in oblique viewing angle. Our method is much faster
due to its feed-forward design, enabling online generation of accurate labels.

On the other hand, the direct regression method generalizes poorly to novel
identities, leading to worse performance on average. It also yields inferior results
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(a) HMC input (b) G.T.  (c) Regression (d) Offline [30] (e) Ours (f) Offline [30] (g) Ours

Fig. 7: Qualitative Results: we compare different methods by evaluating (b,c,d,e)
frontal rendering (with error maps), and (f,g) error maps in HMC viewpoints. More
examples are provided in the supplementary material.

in estimating head poses. The head pose is defined as the relative 3D trans-
formation from a reference camera to the avatar center which is not consistent
across identities and not observable from HMC images. Since the regression
baseline is not conditioned on avatar, there is no information to predict head
poses accurately. We also provide relaxed conditions (e.g. Ry as input, or us-
ing augmented cameras), and interestingly it fails to improve, while our method
can leverage these conditions significantly. Our method’s high accuracy, espe-
cially in the lip region as depicted in the supplementary video, captures nuanced
facial expressions more effectively. These high-quality, quickly generated labels
can be employed to adapt realtime regressors, thereby enhancing the immersive
experience in virtual reality.

4.2 Ablation Studies

Iterative Refinement Module F. Key to our design of F is the application of
transformer on the grid of features from all camera views. We validate this
design by comparing the performance of Fo(Ry;) against the following settings:
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Table 3: Ablation on the design of
F. All methods use Ry as inputs and

without augmented cameras. Table 4: Ablation on the design of S.
Frontal Rot. Trans. Image L1 Error
Image Err. Err.
Ly (deg.) (mm) Ours S 2.55
w/o SWA 2.82
Ours Fo 1.652 0.660 0.618 w/o key cond. 975
w /o transformer 2.533 2.335 2.023 expressions ’
w/o grid features | 2.786 2.818 3.081 w/o Fo 2.99
wjo transformer &| g o, 5 490 5,839
w/o grid features

— w/o transformer, where we replace the transformer with an MLP. This
approach is akin to our direct regression baseline but incorporates iterative
feedback. Here, the grid features from all four camera views are simply con-
catenated and processed by an MLP. This trivial concatenation results in a
2x increase in the number of trainable parameters and subpar generalization.

— w/o grid features, where we average pool grid features to get a single
feature for each camera view and use the same transformer design to process
|C| tokens.

— w/o transformer & w/o grid features, where we use an MLP to process
the concatenation of pooled features from all camera views.

Results are shown in Table [3] We can see that processing grid features using
transformer results in better generalization while requiring fewer parameters
compared to using an MLP with trivial concatenation. Pooling grid features is
also detrimental because it undermines minor variations in input pixels which
are important in the oblique viewing angles of headset cameras. Transformer
operating on grid tokens can effectively preserve fine-grained information and
extract subtle expression details.

Style Transfer Module S. We validate our design of S by comparing it with the
following baselines:

— w/0o SWA, where we simply concatenate the features of input branch with
the features of conditioning branch at each layer.

— w/o key conditioning expressions, where only the conditioning corre-
sponding to the current estimate (2o, vg) is used.

— w/o Fy, where conditioning is comprised only of the four key expressions
rendered using the average viewpoint per-camera, ¥mean-

Table [] shows the average L; error between the foreground pixels of the
groundtruth image and the predicted style transferred image. The larger error
of style-transfer without Fy validates our design that a better style transfer
can be achieved by providing conditioning closer to the groundtruth (z4:, vg:).
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0
Input HMC  StyTe* (1] without Fo

Ours Ground Truth

Fig. 8: Ablation on style transfer results. We compare our results with a generic
style transfer method and baseline methods without the estimates provided by Fo.

When not incorporating SWA or key conditioning expressions, the model
performs poorly when the estimates vy and zgy are suboptimal respectively,
resulting in higher error.

Fig. [8|shows qualitative results of style transfer. Here, we also show the result
of StyTr - one of the recent style transfer methods that leverages the power
of vision transformers with large datasets. Despite using the groundtruth
R, as the style image, it struggles to accurately fill in shadows and fine facial
features that are not visible in the input HMC image. Although ‘Without Fy’
produces better style transfer than StyTr? [11], it smooths out high-frequency
details including freckles, teeth, soft-tissue deformations near eyes and nose.
These high-frequency details are crucial for animating subtle expressions. Our
style transfer model S is able to retain such details by leveraging the estimate
provided by Fy. See the supplementary material for more results.

5 Conclusion and Future Work

In this paper, we present a generic and feed-forward method for efficient reg-
istration of photorealistic 3D avatars on monochromatic images with oblique
viewing angles. We show that closing the domain gap between avatar’s render-
ing and headset images is a key to achieve high registration quality. Motivated
by this, we decompose the problem into two modules, style transfer and itera-
tive refinement, and present a system where one reinforces the other. Extensive
experiments on real capture data show that our system achieves superior regis-
tration quality than direct regression methods and can afford online usage. Our
method provides a viable path for efficiently generating high quality label of
neural rendering avatars on the fly, so that the downstream real-time model can
adapt to achieve higher accuracy. This will enable the user to have photorealistic
telepresence in VR without extensive data capture. In the future, extensions of
our method could be done for general registration of neural rendering models
on out-of-domain multi-view images, such as (non-VR) face registration, body
tracking, and 3D pose estimation.
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1 More Qualitative Results

We show more qualitative results on test identities in Fig.[I2)and Fig. [I3]compar-
ing against regression and offline method. More results can be found in the ac-
companying supplementary video. Overall, the regression method has the larger
error in terms of expression, often failing to capture subtle mouth shapes and the
amount of teeth/tongue that is visible. On the other hand, offline methods that
slowly optimizes the expression code and head pose lead to lowest expression
error overall. However, when key face areas are not well observed in the HMC
images (e.g. row 1,3 in Fig.[12|and row 1,3,4,5,8 in Fig. , our method often es-
timates better expressions. Our method is also superior in head pose estimation.
For example, in row 4,6 of Fig. while our method has slightly high frontal
error (expression), the offline method has higher head pose error, indicated by
higher image error in the HMC perspective (column (f) and (g)). This is often
caused by the style-transfer module compensating for registration error in its
person-specific training regime [33] where the model can overfit more easily. In
contrast, our style transfer module is trained across a diverse set of identities,
and does not overfit as easily, resulting in better retained facial structure, that
in turn, leads to more accurate head pose. Fig. [[4] shows some failure cases of
our method, which is usually caused by uncommon expressions, occluded mouth
regions from HMC cameras, and extreme head poses.

2 Architecture Details

2.1 Iterative Refinement Module F

The iterative refinement module F has ~28M trainable parameters. The CNN
is based on ResNetV2-50 [20] which takes as input images of size 128 x 128 for
each camera view and outputs 512 x 4 x 4 grid features. After adding learnable
patch embedding and view embedding, and concatenating the current estimate
(z¢,v¢), the sequence of |C| x 4 x 4 feature tokens are processed by a ViT-based
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Fig.9: Conditioning Expressions for S: Four conditioning expressions
(Zky s --es 2y ) for three different identities.

transformer module that outputs the update (Az;, Av,). The transformer
module consists of 6 encoder layers and 4 decoder layers operating on 512-dim
tokens. Fy follows the same architecture as F except without the style-transfer
images R as input.

2.2 Style Transfer Module &

The style transfer module, S, has ~25M trainable parameters and operates at
an image resolution of 192 x 192. Both the input encoder and the conditioning
encoder, as well as the decoder, follow the UNet architecture. We train a single
style transfer network for all camera views by incorporating a learnable view
embedding at each layer of the UNet. Since the conditioning images are gener-
ated using the avatar model, D, we also have access to their foreground masks
and projected UV images of their guide mesh [26], which are also input to the
conditioning encoder along with the rendered images.

Fig. Elillustrates the four key conditioning expressions (zg, , ..., 2, ) utilized in
our experiments. These expressions were selected to cover extremes of the expres-
sion space, to compensate for information deficiency in style transfer conditioning
while the estimate z( is suboptimal. Sliding Window Attention (SWA) is
based on the cross-attention layer of the transformer where each grid feature
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Input HMC StyTr? Withlgjt Fo Ours Ground Truth

Fig. 10: More Qualitative Results on Style Transfer: We compare our results
with a generic style transfer method as well as with our baseline method without the
estimates by Fo.

of the input branch cross-attends to a 5 x 5 neighborhood around the aligned
feature of the conditioning branch. SWA compensates for missregistration when
the estimate v( is suboptimal. We show more style transfer results on unseen
test identities in Fig.

3 HMC Details

In this work, we follow the concept of training headset and tracking headset
proposed in [36], where the former has a superset of cameras of the latter (see
Fig. . In this work, we use a more recent and advanced VR consumer headset
QuestPro as the tracking headset, and augment it with additional cameras
on an extended structure as the training headset. As shown in Fig. (a),
there are 10 cameras on the training headset. We use all of them to establish
ground truth with the method in . Camera set C on the tracking headset
and the constructed camera set C’ used for comparison in the main paper are
also annotated in the Fig. Note we exclude the cyclopean camera on the
tracking headset from the camera set C due to limited observation and extreme
illumination. We also focus on mouth area and did not compare against the
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(a) Training Headset (b) Tracking Headset

o Camera set C
Camera set C’
o Other cameras

Fig. 11: HMC details: We use all cameras on training headset to establish ground
truth in this work. Camera sets C' and C’ used in the main paper are annotated.

other 2 eye cameras on the training headset. All cameras are synchronized and
capture at 72 fps.

4 Training Details

Our model is trained in phases, where Fy is first trained, followed by S, which
takes the pre-trained Fy’s output as input. The error distribution of the estimates
(z0,v0) provided by Fy to S will vary between training and testing due to the
generalization gap inherent in Fy. To address this discrepancy, we introduce
random Gaussian noise to the estimates when training S. Similarly, we add
random Gaussian noise the the prediction of & when training F. F is trained for
T = 3 refinement iterations. To stabilize training the gradients of each iteration
are not backpropagated to prior iterations; we detach the predictions (z;y1,v¢4+1)
before passing them as input to the next iteration.

Both F and Fj are trained for 200K steps with a minibatch size of 4 using the
RAdam optimizer . Weight decay is set to 1074, and the initial learning rate
is set to 3 x 10~%. This learning rate is then gradually decayed to 3 x 10~° using
a cosine scheduler. S is trained similarly except that the weight decay is set to
3 x 107%. The rotation component of viewpoint v is converted to a 6D-rotation
representation before passing it to the network. Both loss weights Apme and
Afront are set to 1.
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(a) HMC input (b) G.T. (c) Regression (d) Offline (e) Ours () Offline (g) Ours

Fig.12: More Qualitative Results (1/2): we compare different methods by eval-
uating (b,c,d,e) frontal rendering (with error maps), and (f,g) error maps in HMC
viewpoints.
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(a) HMC input (b) G.T. (c) Regression (d) Offline (e) Ours (f) Offline (g) Ours
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Fig. 13: More Qualitative Results (2/2): we compare different methods by eval-
uating (b,c,d,e) frontal rendering (with error maps), and (f,g) error maps in HMC
viewpoints.
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(a) HMC input (b) G.T. (c) Regression (d) Offline (e) Ours (f) Offline (g) Ours

Fig. 14: Failure cases of our methods: we compare different methods by evalu-
ating (b,c,d,e) frontal rendering (with error maps), and (f,g) error maps in HMC
viewpoints.
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