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Figure 1. UniEgoMotion is a unified, scene-aware motion model designed for egocentric settings: (1) It generates plausible future motion
from a single egocentric image – for example, predicting how you might take your shot on goal. (2) It forecasts upcoming motion using
past egocentric video and ego-device trajectory, showing how you could complete your run-up to score. (3) It reconstructs accurate 3D
motion from past egocentric observations, showing how you squatted down to reach the lower cabinet.

Abstract

Egocentric human motion generation and forecasting with
scene-context is crucial for enhancing AR/VR experiences,
improving human-robot interaction, advancing assistive
technologies, and enabling adaptive healthcare solutions
by accurately predicting and simulating movement from a
first-person perspective. However, existing methods pri-
marily focus on third-person motion synthesis with struc-
tured 3D scene contexts, limiting their effectiveness in real-
world egocentric settings where limited field of view, fre-
quent occlusions, and dynamic cameras hinder scene per-
ception. To bridge this gap, we introduce Egocentric Mo-
tion Generation and Egocentric Motion Forecasting, two
novel tasks that utilize first-person images for scene-aware
motion synthesis without relying on explicit 3D scene. We
propose UniEgoMotion, a unified conditional motion dif-
fusion model with a novel head-centric motion representa-
tion tailored for egocentric devices. UniEgoMotion’s sim-
ple yet effective design supports egocentric motion recon-
struction, forecasting, and generation from first-person vi-

sual inputs in a unified framework. Unlike previous works
that overlook scene semantics, our model effectively ex-
tracts image-based scene context to infer plausible 3D mo-
tion. To facilitate training, we introduce EE4D-Motion,
a large-scale dataset derived from EgoExo4D, augmented
with pseudo-ground-truth 3D motion annotations. UniEgo-
Motion achieves state-of-the-art performance in egocen-
tric motion reconstruction and is the first to generate mo-
tion from a single egocentric image. Extensive evaluations
demonstrate the effectiveness of our unified framework, set-
ting a new benchmark for egocentric motion modeling and
unlocking new possibilities for egocentric applications.

1. Introduction
Egocentric human motion reconstruction, forecasting, and
generation are fundamental for AR/VR, assistive technolo-
gies, and healthcare applications. The egocentric camera
provides a personalized first-person perspective, enabling
interactive and adaptive experiences. Imagine you are learn-
ing to play soccer while wearing smart glasses. Egocen-
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tric motion reconstruction can help analyze and refine your
kicking technique. Egocentric motion forecasting (predic-
tion) can show how you can continue your current run-up to
execute a strike. Egocentric motion generation can simu-
late how you might score a goal from your current position
and angle. These capabilities also extend to movement anal-
ysis in healthcare, aiding in gait assessment, early detection
of neurological and vestibular disorders, and fall prediction.

Despite its potential, egocentric motion understanding
remains a challenging problem. The front-facing egocentric
camera provides only partial visibility of the user’s body,
forcing models to infer motion from a dynamic, first-person
viewpoint with frequent occlusions and motion blur. As a
result, research on egocentric motion forecasting has been
limited [95], and to our knowledge, no prior studies have ex-
plored egocentric motion generation. Most context-aware
motion forecasting and generation works assume explicit
3D scene context in the form of point cloud [59, 73, 102],
mesh [83], voxel grid [10, 33], signed distance field [90,
98], or object geometry [12, 46, 49]. Such 3D scene context
is not available in many real-world egocentric applications.
While RGB videos are the most accessible modality to ac-
quire scene context, very few works use image-based con-
text for motion synthesis. The most relevant prior works
use a third-person scene-wide RGB image to forecast [8]
or generate [84] human motion within that scene. How-
ever, these methods cannot generalize to egocentric settings
where the wider scene context is unavailable due to the lim-
ited field of view and future motion may extend beyond the
visible region, requiring strong motion priors.

To this end, we establish two novel tasks of scene-aware
egocentric motion generation and forecasting only from
egocentric images without requiring 3D scene context. We
introduce UniEgoMotion, a unified model for egocentric
motion reconstruction, forecasting, and generation (see Fig-
ure 1). In particular, it can (1) reconstruct motion using
an input ego video and ego-device’s inertial SLAM trajec-
tory, (2) forecast motion based on past egocentric inputs,
and (3) generate motion from a single egocentric image.
Unlike prior works [42, 48, 92, 95] that discard scene se-
mantics, UniEgoMotion leverages egocentric image-based
scene context to predict plausible and accurate 3D motion
from an egocentric viewpoint. To train UniEgoMotion, we
present EE4D-Motion, a new dataset derived from the large-
scale EgoExo4D [23] dataset. We augment EgoExo4D
videos with paired pseudo-ground-truth 3D motion anno-
tations using a comprehensive motion fitting pipeline, en-
abling training on in-context egocentric video-motion pairs.

At its core, UniEgoMotion is a transformer-based [80]
conditional motion diffusion model that enables flexible
conditioning via cross-attention. To establish scene context,
it leverages a robust image encoder, initialized with strong
pretraining [62], to extract fine-grained visual features, en-

abling precise mapping of the visible environment while
constructing a comprehensive prior of the unseen areas for
holistic motion synthesis. During training, we strategically
mask conditioning inputs (ego images and 3D device trajec-
tory) such that they support both egocentric reconstruction
and generation during inference. Egocentric forecasting is
achieved through diffusion inpainting [55] during inference,
which utilizes the learned egocentric motion diffusion prior
to predict future motion based on past motion reconstruc-
tion. Unlike pelvis-centric motion representations used in
motion synthesis literature [26, 77], UniEgoMotion adopts
a head-centric representation, making it more aligned with
egocentric devices. In addition to generation and forecast-
ing, UniEgoMotion also outperforms state-of-the-art meth-
ods on egocentric motion reconstruction [42, 48, 92] task.

In summary, we make the following contributions:
1. We introduce two novel tasks—Egocentric Motion Gen-

eration and Egocentric Motion Forecasting— expanding
the scope of motion modeling for applications of wear-
able egocentric devices.

2. We propose UniEgoMotion, a novel unified egocentric
motion model that performs reconstruction, forecasting,
and generation in a single framework. It surpasses state-
of-the-art baselines on egocentric motion reconstruction
and, to our knowledge, is the first model to generate mo-
tion from a single egocentric image.

3. We present EE4D-Motion, a large-scale dataset of ego-
centric video-motion pairs, enabling the video-based
scene context-aware human motion modeling.

2. Related Work
Scene-aware Motion Generation: Motion generation has
been extensively studied in various settings, including char-
acter control [35, 39, 40, 53], animation [31, 34, 50, 69, 75],
action-to-motion synthesis [25, 67, 77, 87], and more re-
cently, text-to-motion generation [3, 13, 20, 26, 27, 68, 77,
96, 97]. Scene-aware motion generation focuses on gener-
ating motion grounded in a given scene context. Most ap-
proaches condition motion generation on explicit 3D scene
representations, such as scene point clouds [2, 88, 102],
meshes [83], voxel grids [10, 33, 43, 74], signed dis-
tance fields [32, 89, 93, 98], or specific object geometries
[12, 46, 49, 100]. Some works leverage 3D scene context
for navigational motion generation [83, 101], while others
model human-scene [2, 10, 32, 33, 43, 74, 88, 89, 93, 98]
and human-object interactions [12, 46, 49, 74, 100].

However, capturing high-quality 3D scene data requires
complex setups or extensive offline reconstruction [24, 63,
79], making it impractical for real-world egocentric appli-
cations. In contrast, RGB images are easily accessible but
pose challenges in extracting relevant scene context due to
their limited field of view, dynamic motion, and occlusions.
Yet, motion generation from image-based scene context re-
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mains underexplored, with [84] being the only work propos-
ing a two-stage GAN-based [21] model to generate human
motion from a single wide-scene RGB image. We tackle a
more challenging yet practical egocentric setting by intro-
ducing the egocentric motion generation task, which gener-
ates context-aware motion from a single egocentric image.
Motion Forecasting: Motion forecasting, i.e., predicting
future motion based on past motion, has been widely ex-
plored in a context-independent setting. Approaches range
from traditional models [47, 76, 82] to modern deep learn-
ing, including MLPs [29], RNNs [11, 18, 41, 60, 81], graph
convolutional networks [14, 28], Transformers [1, 6, 58,
61], RL controllers [95], and diffusion models [4].

Similar to motion generation, scene-aware motion fore-
casting assumes access to a clean 3D scene as context to
predict future motion [12, 59, 73, 90, 102], with a few ex-
ceptions [8, 95]. [8] uses a single wide-scene RGB im-
age along with past poses to predict future motion. It pro-
poses a three-stage method: stochastic goal prediction via a
VAE [45], deterministic trajectory prediction, and determin-
istic pose generation. [95] applies an RL-based controller
for motion forecasting from egocentric devices, though its
evaluation is limited to simple actions like walking and run-
ning. In contrast, we address scene-aware motion forecast-
ing in an egocentric setting using diffusion modeling [38],
enabling more diverse and complex motion predictions.
Egocentric Motion Reconstruction: Unlike downward-
facing camera setting [54, 64, 71, 78, 85], egocentric motion
reconstruction focuses on front-facing ego cameras, which
are more common in publicly available devices [15]. This
introduces significant challenges due to limited body visi-
bility and requires strong motion priors. Many works use
simulation-based physical motion priors [56, 94, 95] or dif-
fusion motion priors [30, 42, 48, 92] learned from large mo-
tion datasets. However, [48, 95] use input video to com-
pute optical flow to estimate the ego-device’s 3D trajectory,
discarding valuable scene context. [9, 42, 92] depend ex-
clusively on accurate ego-device trajectory computed via
SLAM, without incorporating scene context. These ap-
proaches are suboptimal for activities where head motion
is minimal, such as cooking or playing a music instrument.
The closest work to ours is [30], which integrates scene
point clouds and ego-image features for scene-aware ego-
centric motion reconstruction. In contrast, our approach
does not rely on point cloud input; instead we leverage only
egocentric images to capture scene context. Some concur-
rent works [16, 86] finetune language models on motion and
text from the Nymeria [17] dataset, conditioning on egocen-
tric inputs, for autoregressive motion reconstruction and un-
derstanding. Note that prior works often refer to this task as
‘motion generation’ due to its generative nature. However,
we differentiate between egocentric motion generation and
reconstruction based on available sensory information.

3. Method

3.1. Problem Formulation
Let I1:N = (I1, I2, · · · , IN ) denote a sequence of ego-
centric video frames captured by a head-mounted camera,
where each RGB frame Ii ∈ RH×W×3. Let T 1:N =
(T1, T2, · · · , TN ) represent the camera’s 6-DOF trajectory.
Modern wearable devices equipped with state-of-the-art
inertial SLAM systems [15] can compute T 1:N in real-
time. Let X1:N = (X1, X2, · · · , XN ) denote the 3D hu-
man motion of the user wearing the camera. Each pose
Xi at timestamp i is defined by SMPL-X [65] parameters
Xi = (Rr

i , t
r
i , θi, βi) where Rr

i ∈ R3 and tri ∈ R3 de-
notes root joint’s global rotation and translation (at pelvis),
θi ∈ R21×3 denotes the local joint angles of the kinematic
skeleton with 21 joints, and βi ∈ R10 denotes body shape
which remains constant over time (βi = βj for all i, j). Us-
ing this notation, we define three egocentric motion tasks:

Egocentric Motion Generation aims to synthesize
plausible future motion from a single egocentric image.
Formally, this task involves sampling from p(X1:N |I1),
where the front-facing egocentric image I1 provides a per-
sonalized scene context. This problem is more challeng-
ing than 3D scene-aware motion generation because, with-
out explicit 3D scene input, the model must infer geometric
information from the visible scene and make plausible as-
sumptions about occluded regions. For instance, if the right
corner of a soccer field is visible, the model must reason
about the likely position of the goal net. Additionally, the
model must infer the ongoing action without explicit action
labels or textual prompts. For example, if the egocentric
image captures raised hands holding a basketball, the most
plausible motion is taking a shot at the basket.

Egocentric Motion Forecasting predicts future motion
given past egocentric observations, formulated as sampling
from p(Xn+1:N |I1:n,T 1:n) where n < N . This pro-
cess implicitly involves reconstructing past motion, rep-
resented as p(X1:n|I1:n,T 1:n), followed by traditional
pose forecasting. Thus, it can also be formulated as
p(Xn+1:N |I1:n,X1:n). 1 In this paper, we adopt the for-
mer definition. This task is easier than generation as the
model benefits from the past observations, providing addi-
tional context and constraints on plausible future motion.

Egocentric Motion Reconstruction aims to recover
motion from an egocentric video and the corresponding
ego camera trajectory. It is formulated as sampling from
p(X1:N |I1:N ,T 1:N ). Compared to generation and fore-
casting, reconstruction is relatively easier due to its strong
frame-aligned conditioning. Prior works [9, 30, 42, 48, 92]
often refer to this as a ‘generation’ task because of the

1It is reasonable to assume that the egocentric device is placed at a
fixed location with respect to the user’s head and device location Ti can be
derived from pose Xi using a known transform.
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Figure 2. Overview of a denoising step in UniEgoMotion. The input noisy motion Xt
1:N is denoised using a transformer decoder network

conditioned on the ego-device trajectory T 1:N and egocentric images I1:N . A robust image encoder is used to extract fine-grained
scene context from the images. During training, conditioning inputs are randomly replaced with learnable mask tokens to simulate three
tasks: egocentric reconstruction, forecasting, and generation. During inference, the learned mask tokens are used in place of any missing
conditioning input, allowing a single model to perform all three tasks consistently.

body’s partial visibility in egocentric views. However, we
adopt the term ‘reconstruction’ based on its frame-wise
aligned conditioning to distinguish it from egocentric gen-
eration and forecasting.

3.2. Diffusion Motion Modeling
Most diffusion-based motion models follow [38, 77] and
train a conditional diffusion model [37]

X̂ =M
(
Xt, t, C; Θ

)
where Xt is a noised version of the clean motion X , X̂
is the predicted clean motion, t is the diffusion timestep,
C represents optional conditioning inputs, and Θ are the
learnable model parameters. For clarity, motion frame in-
dices are omitted i.e. X = X1:N . Following [38], X is
sampled using a forward Gaussian diffusion process

qt(X
t|X) = N (Xt;

√
ᾱtX, (1− ᾱt)I)

where ᾱt defines a monotonically increasing noise sched-
ule. The modelM(·|· ; Θ) learns the reverse diffusion pro-
cess by minimizing the following denoising loss.

L = Et∈[1,tmax],Xt∼qt(·|X)

[∥∥X −M (
Xt, t, C

)∥∥2
2

]
The conditioning input C can include text prompts, action
labels, 3D scene or object geometry, or other relevant fea-
tures, depending on the task. During inference, sampling
starts from random Gaussian noise Xtmax ∼ N (0, I), and
iteratively denoises through

Xt−1 =M(Xt, t,C) + ϵt

until t = 1, ultimately generating a clean sequence X0.

3.3. UniEgoMotion
Instead of training separate models for egocentric recon-
struction, forecasting, and generation, we use a unified ap-
proach where the conditioning C is adapted to the specific
task, as described in §3.1. Recent egocentric motion re-
construction methods [9, 48, 92] fit into this framework
by setting C = T 1:N . However, we leverage the fact
that conditional diffusion models trained with classifier-free
guidance [37] support sampling from both conditional and
unconditional distribution. While [37] used unconditional
generation to balance sample quality and diversity, we em-
ploy it specifically for egocentric motion generation. Dur-
ing training, we randomly set C = {T 1:N , I1:N} to simu-
late the reconstruction task and C = {I1} to simulate the
generation task, covering the both extremes.

Forecasting can be trained by setting C = {T 1:n, I1:n}
where n < N . For the reconstruction-then-forecasting ap-
proach, diffusion repainting [55] can also be applied dur-
ing inference. In particular, given inputs {T 1:n, I1:n}, we
first reconstruct the observed motion (using egocentric re-
construction) as X1:n ∼ M(·|T 1:n, I1:n). We then con-
dition on C = {T 1:n, I1:n} and sample the full motion
sequence X̂1:N , enforcing consistency by overwriting the
known frames at each step as the following.

X̂1:N ← concat(X1:n, X̂n+1:N )

3.4. Architecture
We implement UniEgoMotion using a transformer-
based [80] architecture to denoise noisy motion input
Xt

1:N . Each motion input Xi is projected into a latent vec-
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tor via a linear layer, fX(Xi), and then processed by mul-
tiple transformer decoder layers. For conditioning, we use
full conditioning C = {T 1:N , I1:N} during reconstruction.
In generation mode, where C = {I1}, we use a learnable
mask inputs to create full conditioning. In particular, we
set Ti = Tmask for all i ∈ {1, · · · , N} and Ii = Imask for
all i ∈ {2, · · · , N}. Forecasting conditioning is processed
in a similar manner. Each Ti and Ii is projected into a la-
tent vector using fT (Ti) and fI(Ii), where fT is a linear
layer and fI is a ViT-based image encoder. fT (Ti) is added
to fX(Xi) before passing through the transformer, while
fI(Ii) is incorporated via a cross-attention mechanism.

Unlike prior works [48, 92] that discard semantic infor-
mation from ego images, we integrate fine-grained scene-
aware features through fI . We show that the choice of
fI significantly impacts the accuracy and fidelity of mo-
tion prediction. Training fI from scratch is suboptimal,
as extracting scene context from images is a challenging
problem in itself. To address this, we leverage a pretrained
DINOv2 [62] to initialize fI , training only the projector
network. Our results show that its fine-grained features
from [62] yield significant improvements over other strong
image encoders [66, 70].

3.5. Motion Representation

Although SMPL-X parameters Xi = (Rr
i , t

r
i , θi, βi) are

sufficient to represent 3D body motion, they are not ideal
for learning [26, 92]. The global root trajectory (Rr

i , t
r
i ),

defined at the pelvis, fails to exploit motion redundancies,
requiring the model to learn all directions explicitly. More-
over, a mismatch exists between the egocentric conditioning
inputs (Ti, Ii) and the pelvis-centric SMPL-X parameters,
complicating motion reasoning. Using local joint angles
further forces to learn complex forward kinematics, often
leading to artifacts like foot-floor penetration and sliding.

To address these issues, we adopt a head-centric repre-
sentation. We transform Xi into (Mh

i ,M
j
i ) using forward

kinematics where Mh
i ∈ R4×4 is the global SE(3) trans-

form of the head joint, and M j
i ∈ R21×4×4 are those of

other joints. This removes joint dependencies in the kine-
matic chain. Next, we derive a canonical reference frame
cMi per frame by eliminating pitch, roll, and height relative
to the floor, ensuring that cMi captures the head’s global
trajectory projected onto the floor. Motion (Mh

i ,M
j
i ) is

then expressed as (cMi, cMi ⊙Mh
i , cMi ⊙M j

i ) where the
latter terms encode local canonicalized pose information.
For trajectory invariance, we represent cMi as its residual
relative to the previous frame. While [92] adopts a similar
canonicalization scheme, it preserves the kinematic chain,
resulting in severe foot-floor penetration and floating arti-
facts. Our experiments validate the effectiveness of our mo-
tion representation against [92].

3.6. EE4D-Motion Dataset
To train UniEgoMotion, we process EgoExo4D dataset [23]
and develop EE4D-Motion dataset that provides synchro-
nized egocentric videos and pseudo-ground-truth 3D mo-
tion data. Since existing datasets either lack paired egocen-
tric videos or motion annotations, we develop a process-
ing pipeline to fit SMPL-X [5] to EgoExo4D sequences.
Our approach refines initial pose estimates through multi-
view optimization, sequence-level smoothing, and quality
filtering, producing 110+ hours of 3D-accurate motion data
for real-world activities. Please refer to suppl. material for
more details on EE4D-Motion.

4. Experiments

We follow the official split of the EgoExo4D dataset [23]
to partition the EE4D-Motion dataset into training and val-
idation sets based on capture takes. UniEgoMotion and
other baselines are trained on 8-second video clips sam-
pled at 10fps (N = 80), with clips extracted every 2 sec-
onds, resulting in a total of 143K training samples. For
evaluation, we sample similar video clips every 20 seconds,
yielding 4400 validation samples. For forecasting, we pre-
dict 6 seconds into the future after observing first 2 seconds
(n = 20) of egocentric inputs. We train a single UniEgo-
Motion model and evaluate it across all three tasks.

4.1. Metrics
We employ several metrics to evaluate motions in both 3D
and semantic space. MPJPE calculates the mean per-joint
positional error (in meters) of 22 body joints. MPJPE-PA
applies Procrustes analysis to align ground truth and pre-
dicted motions per frame before computing MPJPE, mea-
suring the accuracy of local pose predictions. MPJPE-H
calculates the mean per-joint positional error (in meters)
of hand joints. Head Rotation Error and Head Trans-
lation Error measure the rotation error and translation er-
ror (in meters) of the head joint, respectively, capturing the
model’s ability to adhere to head-aligned conditioning in-
puts for the reconstruction task. Rotation error is calculated
as the frobenius norm of the difference rotation matrix [48].
Foot Sliding [34] quantifies the extent of foot sliding when
the foot is close to the ground. Foot Contact computes
the average separation (in meters) between foot and ground.
It quantifies both floating and floor penetration. Semantic
Similarity evaluates the similarity between generated and
ground-truth motions similar to CLIP-score [36]. Specifi-
cally, we leverage the motion encoder from TMR [27] to
embed motion into a latent space and compute the cosine
distance between embeddings. FID measures the distribu-
tional discrepancy between generated and ground-truth mo-
tions in the latent space, akin to vanilla FID for images.

For generation and forecasting, we compute the MPJPE

5



AvatarPoser EgoEgo EgoAllo Ours Ground truth

Figure 3. Qualitative comparison of Egocentric Reconstruction. The input egocentric images are shown on the left, with the corresponding
ego-device trajectory visualized alongside the predictions. Baseline methods exhibit floating motion, floor penetration, and inaccurate joint
localization, whereas UniEgoMotion generates reconstructions that closely align with the ground truth.

Table 1. Egocentric Motion Reconstruction: Comparison of the reconstruction capabilities of UniEgoMotion with prior works (top). Ab-
lation on UniEgoMotion’s model design for the reconstruction task (bottom). Note that the vanilla UniEgoMotion model uses transformer
decoder architecture, head-centric motion representation, and DINOv2 visual encoder.

Method Head Rot.
Err.

Head Trans.
Err. MPJPE MPJPE-PA MPJPE-H Foot

Slide
Foot

Contact
Semantic
Sim.(↑) FID

AvatarPoser [42] - - 0.116 0.068 0.240 7.85 0.042 0.872 0.082

EgoEgo [48] - - 0.130 0.075 0.272 3.90 0.033 0.858 0.068

EgoAllo [92] 0.531 0.130 0.163 0.071 0.273 4.10 0.056 0.885 0.043

UniEgoMotion 0.260 0.058 0.100 0.053 0.180 3.62 0.027 0.918 0.027

Transformer Encoder 0.280 0.076 0.115 0.056 0.189 4.48 0.029 0.912 0.017

1D U-Net 0.338 0.109 0.145 0.061 0.224 5.86 0.032 0.900 0.019

Global Motion Repre. 0.275 0.051 0.101 0.057 0.192 3.73 0.025 0.912 0.024

Pelvis-centric Repre. 0.398 0.138 0.166 0.054 0.241 3.66 0.028 0.909 0.030

CLIP encoder 0.269 0.062 0.107 0.056 0.191 4.03 0.032 0.911 0.021

EgoVideo encoder 0.332 0.101 0.132 0.060 0.211 4.73 0.032 0.897 0.041

and MPJPE-PA metrics only for the first 2 seconds of pre-
diction, as beyond that, generated motions may remain valid
despite exhibiting large joint errors. FID and Semantic Sim-
ilarity compares motions in a semantic latent space and of-
fers a more meaningful evaluation of the motion quality and
scene-relevance respectively. Foot Slide and Foot Contact
capture physical realism of the predicted motion.

4.2. Baselines
We compare our egocentric motion reconstruction with
task-specific prior works: EgoEgo [48], EgoAllo [92], and
AvatarPoser [42]. To ensure a fair evaluation, we retrain
each method on the EE4D-Motion dataset using publicly
available code. None of these baselines use semantic in-
formation from egocentric images for prediction. We com-
pare these baselines on the reconstruction task and fur-
ther ablate their design choices within our UniEgoMotion
framework in a consistent manner. Since there are no di-
rect baselines for egocentric motion forecasting and gen-
eration, we construct strong baselines based on state-of-

the-art motion modeling practices. LSTM-forecasting is
a task-specific model that sequentially processes forecast-
ing inputs {fI(Ii), fT (Ti)}i=1:n using an LSTM and out-
puts the motion Xn+1:N . Similarly, LSTM-generation pro-
cesses fI(I1) to generate X1:N . We also train a two-stage
model to replicate the two-stage approach used in prior
works on wide-scene image-based forecasting [8] and gen-
eration [84], but with diffusion modeling. In particular, a
UniEgoMotion-trajectory model first predicts the head tra-
jectory, followed by the standard UniEgoMotion model,
which takes the predicted head trajectory as additional in-
put. We further ablate our model by replacing the trans-
former decoder with a transformer encoder and a special-
ized 1D-UNet-based motion model [44]. We also evaluate
our motion representation against simple global representa-
tion [48] and traditional pelvis-centric representation [26,
42, 92]. Finally, we examine the impact of using fine-
grained features of DINOv2 versus text-optimized semantic
features trained on general natural images (CLIP [70]) and
in-domain egocentric images (EgoVideo [66]).
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LSTM-Forecasting Two-stage Ours

Figure 4. Qualitative comparison of Egocentric Forecasting for predicting future motion using the first 2 seconds of egocentric video
and trajectory input. The LSTM baseline predicts an average future motion and suffers from foot sliding, while the Two-stage baseline
produces damped motion. In contrast, our model successfully predicts complex motions, such as squatting down to repair a bike tire (top),
performing a salsa dance (middle), and executing a dribbling drill around a dome cone (bottom).

Table 2. The baselines and ablations are evaluated on egocentric motion forecasting (left) and generation (right). The metrics reported
include J: MPJPE, J-PA: MPJPE-PA, J-H: MPJPE-H, FS: Foot Slide, FC: Foot Contact, and SS: Semantic Similarity. MPJPE metrics are
computed over the first two seconds of future predictions (0-2s for generation and 2-4s for forecasting). ∗Two-stage baseline replicates the
trajectory-to-motion prediction framework used in prior works on image-based motion forecasting [8] and motion generation [84].

Egocentric Motion Forecasting Egocentric Motion Generation

Method J
(2-4s)

J-PA
(2-4s)

J-H
(2-4s) FS FC SS (↑) FID J

(0-2s)
J-PA
(0-2s)

J-H
(0-2s) FS FC SS (↑) FID

LSTM 0.238 0.066 0.330 7.23 0.031 0.849 0.058 0.216 0.067 0.308 6.83 0.028 0.809 0.090

Two-stage∗ [8, 84] 0.253 0.072 0.361 3.55 0.026 0.850 0.038 0.222 0.072 0.323 4.35 0.026 0.822 0.037

UniEgoMotion 0.206 0.071 0.308 2.60 0.026 0.849 0.047 0.226 0.070 0.321 2.89 0.025 0.817 0.043

Transformer Encoder 0.213 0.073 0.315 3.13 0.027 0.846 0.041 0.231 0.072 0.330 3.40 0.026 0.814 0.034

1D U-Net 0.239 0.075 0.346 4.11 0.027 0.840 0.056 0.259 0.079 0.360 4.06 0.029 0.802 0.035

Global Motion Repre. 0.293 0.076 0.405 3.16 0.027 0.841 0.046 0.228 0.072 0.328 3.65 0.025 0.821 0.035

Pelvis-centric Repre. 0.245 0.074 0.354 3.56 0.030 0.838 0.042 0.232 0.071 0.327 3.94 0.029 0.814 0.039

CLIP encoder 0.214 0.073 0.315 3.75 0.030 0.844 0.043 0.238 0.073 0.333 3.57 0.028 0.816 0.037

EgoVideo encoder 0.228 0.077 0.331 3.65 0.030 0.835 0.060 0.236 0.074 0.322 3.50 0.030 0.812 0.059

4.3. Results & Discussion
Egocentric Motion Reconstruction: Tab. 1 shows the re-
sults and ablation study for the egocentric reconstruction
task, and Fig. 3 shows the qualitative comparison of the
reconstruction baselines. UniEgoMotion’s egocentric re-
construction capabilities outperform specialized baselines –
AvatarPoser[42], EgoEgo [48], and EgoAllo [92], in both
reconstruction and semantic metrics. EgoAllo’s pelvis-
centric motion representation struggles to accurately follow
egocentric inputs, resulting in high head rotation and trans-
lation errors. As seen in Fig. 3, it shows frequent float-
ing motion which explains its high Foot Contact error in
Tab. 1. We further verify the benefits of egocentric mo-
tion representation by training UniEgoMotion with a pelvis-
centric representation. We also show that transformer cross-

attention is better suited for our flexible conditioning set-
ting [72] compared to encoder-based architectures [30, 48]
and specialized 1D-Unet [44]. Thanks to the explicit use of
fine-grained image features, UniEgoMotion captures visi-
ble semantic cues more effectively and achieves the lowest
MPJPE-* errors along with the highest motion quality and
semantic similarity to the ground-truth motion.

Although UniEgoMotion with CLIP [70] image encoder
shows strong performance [30], the fine-grained features of
DINOv2 [62] are more suitable for extracting task-relevant
scene context, which is often not the central focus of the
image. Surprisingly, the in-domain contrastive video fea-
tures of EgoVideo [66] perform slightly worse than CLIP,
suggesting that generalized scene context is more important
than ego-action centric image features.
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LSTM-Generation Two-stage Ours

Figure 5. Qualitative comparison of Egocentric Motion Generation from a single egocentric image input. Compared to the LSTM and Two-
stage baseline, our model leverages the fine-grained image features for more accurate motion generation, demonstrating soccer juggling
(top), a basketball shooting drill (middle), and interaction with the lower cabinet on the left side of the person.

Egocentric Motion Forecasting & Generation: Tab. 2
shows the quantitative results for the forecasting and gen-
eration tasks. Qualitative results are shown in Fig. 4 & 5
respectively. Since the LSTM-based forecasting/generation
baselines deterministically output the average of plausible
future motions, they perform well on comparison metrics
such as MPJPE and Semantic Similarity. However, the gen-
erated average motion exhibits significant foot-sliding and
floor-penetration, resulting in lower motion quality, par-
ticularly affecting the Motion FID score. The extensive
two-stage baseline performs slightly worse on some met-
rics due to a mismatch between the distributions of the gen-
erated and groundtruth trajectories. However, it achieves
strong motion quality metrics, benefiting from the vanilla
UniEgoMotion model used in the second stage. In com-
parison, UniEgoMotion enables one-shot high-quality fore-
casting and generation within a unified model, delivering
strong overall performance across all metrics.

We also evaluate various design aspects of UniEgoMo-
tion in the forecasting and generation tasks, and the re-
sults are consistent with those observed in the reconstruc-
tion task. Motion representation plays an important role
in generating high-quality motion, as reflected in metrics
such as Foot Slide. The choice of image encoder has a
slightly smaller impact than in reconstruction, as high-level
scene context may be sufficient for generating/forecasting
scene-relevant motion. However, a fine-grained image en-
coder still provides meaningful benefits in all metrics and
noticeably improves motion realism, as observed in FC and
FS metrics. Interestingly, 1D-UNet [44], which focuses

on local motion reasoning, performs noticeably worse in
both generation and forecasting. For additional ablation and
qualitative comparisons, please refer to the suppl. material.

5. Conclusion & Future Work
We present UniEgoMotion, a unified framework for ego-
centric motion reconstruction, forecasting, and genera-
tion. Unlike previous methods, it extracts scene con-
text from egocentric images, enabling scene-aware mo-
tion synthesis without explicit 3D scene. By integrat-
ing fine-grained visual features, our approach improves
motion accuracy and realism. We also introduce EE4D-
Motion, a large-scale dataset from EgoExo4D, offering
time-synchronized egocentric video and pseudo-ground-
truth 3D motion data. UniEgoMotion outperforms state-of-
the-art methods in egocentric motion reconstruction while
enabling novel egocentric forecasting and generation capa-
bilities. Our experiments emphasize the need for scene-
aware motion reasoning. We show that instead of special-
ized motion architectures, a well-structured simple model
with a strong context encoder and egocentric motion rep-
resentation achieves superior results. Looking ahead, we
plan to explore egocentric scene-motion interactions and
leverage multimodal annotations for applications like in-
context motion generation from text prompts. We believe
UniEgoMotion provides a strong benchmark to drive future
research in egocentric motion analysis and generation.
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UniEgoMotion: A Unified Model for Egocentric Motion Reconstruction,
Forecasting, and Generation

Supplementary Material

A. Qualitative Comparison

See Fig. 6 for a qualitative visualization of egocentric mo-
tion reconstruction, with vertex errors color-coded. Please
refer to the supplementary video to view UniEgoMotion’s
results on egocentric motion reconstruction, forecasting,
and generation, as well as comparisons with baselines.

B. Baselines

Egocentric Motion Reconstruction
We compare the egocentric motion reconstruction capa-
bilities of UniEgoMotion with task-specific prior works:
EgoEgo [48], EgoAllo [92], and AvatarPoser [42]. To en-
sure a fair evaluation, we retrain each method on the EE4D-
Motion dataset using their publicly available code. Follow-
ing EgoEgo’s experimental setup, we exclude hand track-
ing from AvatarPoser and instead provide a constant in-
put for hand trajectories. Both EgoEgo and AvatarPoser
use head trajectories derived from motion annotations rather
than from the Aria device’s SLAM system, resulting in per-
fect head tracking by design. Therefore, we omit their head
tracking metrics from the evaluation. For EgoAllo, we eval-
uate the output of the motion diffusion model directly, with-
out applying the post-processing optimization step.

Although EgoEgo and EgoAllo also adopt diffusion-
based formulation for motion reconstruction, their approach
differ from ours in their choice of motion representation and
model architecture. For instance, EgoEgo assumes a con-
stant body shape and uses a global motion representation,
whereas EgoAllo uses a head-centric representation that ex-
plicitly includes the head-to-pelvis transformation and pre-
serves the kinematic chain. More importantly, none of
these baselines utilize semantic information from egocen-
tric video for motion prediction. We compare these meth-
ods on the reconstruction task and also ablate their design
choices separately within our UniEgoMotion framework in
a consistent manner.

Egocentric Motion Forecasting & Generation
For egocentric motion forecasting and generation, the most
relevant baselines [8, 84] are two-stage models that generate
or forecast human motion from third-person RGB images.
They first predict the root trajectory (typically pelvis) and
then generate the full-body human motion using a global
motion representation. To replicate these baselines faith-
fully, we train a separate UniEgoMotion variant that uses
global motion representation and predicts only the root tra-

jectory. This output is then provided as an additional con-
ditioning input to the standard UniEgoMotion model (also
with global motion representation) for full-body motion
prediction. We also train separate autoregressive LSTM-
based baselines with a comparable model capacity for both
forecasting and generation tasks. Since these models lack a
generative component, their outputs tend to regress toward
the mean of all plausible futures. As a result, they show
lower error in direct comparison metrics such as MPJPE.
However, their ‘averaged’ prediction suffer from reduced
motion diversity and realism, as shown in semantic metrics
and qualitative visualization (see supplementary video).

C. Ablation on Conditioning Inputs
We evaluate UniEgoMotion under two ablation settings:
without trajectory input and without video input. Addi-
tionally, we train two single-modality variants of UniEgo-
Motion. Egocentric reconstruction results in Tab. 3 shows
that both signals are useful for optimal reconstruction per-
formance, thereby validating our use of video input, unlike
prior baselines. Interestingly, the separately trained single-
modality variants offer no significant advantage over the
original UniEgoMotion model when evaluated under the
same conditions. Without video input, UniEgoMotion still
outperforms baselines on most metrics. However, when the
trajectory input is removed, the model is forced to implicitly
solve visual odometry problem (a significantly harder task),
leading to large errors on absolute metrics (head tracking,
MPJPE, MPJPE-H). Despite this, it maintains accuracy in
local pose metrics (MPJPE-PA, semantic similarity) and re-
alism (FID), showing its ability to infer plausible motion
from video alone.

EgoEgo [48] employed an off-the-shelf monocular vi-
sual SLAM on egocentric video and trained an additional
module to predict scale and the gravity vector to derive
gravity-aligned metric SLAM trajectory. Their results
showed that using predicted metric SLAM trajectory leads
to only a minor degradation in pose metrics compared to
using ground-truth trajectories. In our work, we assume ac-
cess to inertial SLAM trajectories for both our method and
the baselines to decouple motion analysis from trajectory
estimation and focus our evaluation on motion tasks.

Forecasting and generation results follow similar trends,
with both input modalities contributing to optimal perfor-
mance. Notably, the model without video input performs
worse, as it lacks scene context necessary for generating or
forecasting relevant motion.
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Figure 6. Qualitative comparison of Egocentric Reconstruction, with absolute vertex errors color-coded. The input egocentric images are
shown on the left, with the corresponding ego-device trajectory visualized alongside the predictions.

Table 3. Ablation on Conditioning Inputs: We evaluate UniEgoMotion in two ablation settings–without video and without trajectory
input. Additionally, we train two single-modality variants of UniEgoMotion by conditioning only on trajectory or only on video.

Egocentric Motion Reconstruction

Method Head Rot.
Err.

Head Trans.
Err. MPJPE MPJPE-PA MPJPE-H Foot

Slide
Foot

Contact
Semantic
Sim.(↑) FID

UniEgoMotion 0.260 0.058 0.100 0.053 0.180 3.62 0.027 0.918 0.027

w/o video 0.278 0.057 0.115 0.066 0.234 3.64 0.026 0.878 0.030

w/o trajectory 0.539 0.280 0.290 0.059 0.352 2.95 0.024 0.885 0.033

UniEgoMotion (w/o video) 0.293 0.063 0.119 0.067 0.239 3.49 0.025 0.877 0.026

UniEgoMotion (w/o trajectory) 0.535 0.292 0.299 0.060 0.362 2.70 0.023 0.886 0.035

Egocentric Motion Forecasting Egocentric Motion Generation

Method J
(2-4s)

J-PA
(2-4s)

J-H
(2-4s) FS FC SS (↑) FID J

(0-2s)
J-PA
(0-2s)

J-H
(0-2s) FS FC SS (↑) FID

UniEgoMotion 0.206 0.071 0.308 2.60 0.026 0.849 0.047 0.226 0.070 0.321 2.89 0.025 0.817 0.043

w/o video 0.255 0.090 0.378 2.43 0.028 0.782 0.058 0.356 0.100 0.449 2.36 0.027 0.696 0.065

w/o trajectory 0.322 0.070 0.414 2.66 0.025 0.838 0.047 0.226 0.070 0.321 2.89 0.025 0.816 0.043

UniEgoMotion (w/o video) 0.276 0.095 0.400 2.69 0.028 0.767 0.067 0.379 0.108 0.483 3.03 0.027 0.684 0.044

UniEgoMotion (w/o trajectory) 0.318 0.070 0.404 2.50 0.024 0.842 0.050 0.228 0.070 0.321 2.71 0.024 0.820 0.044

D. Why Not Text Conditioning

Many motion generation approaches [16, 77, 86] rely on
text-based conditioning, where a clear textual prompt de-
fines the intended motion or action. This explicit guidance
simplifies the generation process. In contrast, our work fo-
cuses on passive conditioning using sensor data (e.g., video
and device trajectory), where motion must be inferred with-
out direct user input. While this introduces greater am-
biguity, it also enables broader applicability in real-world
scenarios such as continuous gait monitoring or fall pre-
diction, where explicit user inputs are typically unavail-
able. Nonetheless, we believe that egocentric motion gen-

eration and forecasting from text prompts are promising fu-
ture directions for many assistive applications. Our work,
along with datasets like EE4D-Motion (with action narra-
tions from EgoExo4D) and Nymeria [17], offers a promis-
ing starting point for such research.

E. Training Details

We train UniEgoMotion for 350 epochs using a batch size of
64 and the AdamW optimizer with a weight decay of 0.01.
The learning rate is initialized at 3e-5 and decayed to 3e-6
after epoch 300. The model follows a standard transformer
architecture [80], comprising 12 decoder layers with a latent
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dimension of 768. Training is conducted on 8-second mo-
tion sequences (80 steps at 10 fps), enabling long-horizon
motion prediction. To improve training efficiency, DINOv2
features are precomputed and cached. End-to-end training
takes approximately 2 days on a single NVIDIA L40S GPU.
For diffusion, we use cosine noise scheduling with 1000
steps, consistent with prior works [48, 77], though effective
motion synthesis has been demonstrated with very few dif-
fusion steps [30, 77]. During training, we alternate between
reconstruction and generation tasks with equal 0.5 probabil-
ity by randomly masking the input sequence.

F. Motion Representation
Although SMPL-X parameters Xi = (Rr

i , t
r
i , θi, βi) are

sufficient to represent 3D body motion, they are not always
ideal for learning [26, 92]. The global parameterization of
the root trajectory (Rr

i , t
r
i ), defined at the pelvis, does not

exploit motion invariances, forcing the model to learn all
movements in every direction separately. Moreover, a mis-
match exists between the conditioning information (Ti, Ii),
defined in the egocentric frame, and the SMPL-X parame-
ters Xi, defined in the pelvis-centric frame. This misalign-
ment complicates the reasoning between pelvis-centric mo-
tion and egocentric conditioning inputs. Additionally, using
local joint angles forces the model to reason complex for-
ward kinematics of the SMPL-X skeleton, often resulting
in suboptimal motion with noticeable artifacts such as foot-
floor penetration and foot sliding.

To address these issues, we adopt a head-centric motion
representation instead of a pelvis-centric one. We trans-
form the SMPL-X parameters Xi = (Rr

i , t
r
i , θi, βi) into

(Mh
i ,M

j
i ) using forward kinematics where Mh

i ∈ R4×4

is the global SE(3) transform of the head joint, and M j
i ∈

R21×4×4 are the global SE(3) transforms of other joints.
This eliminates the dependency of each joint on its parent in
the kinematic chain. Next, we derive a canonical reference
frame cMi for each frame by projecting the head transform
Mh

i onto the floor. In particular, cMi represents the global
3D transform of the head joint after removing the pitch and
roll angle (keeping only yaw) and removing its height tz
relative to the floor (+Z direction). We then express the mo-
tion (Mh

i ,M
j
i ) as (cMi, cMi ⊙Mh

i , cMi ⊙M j
i ), where

cMi captures the head’s global trajectory projected onto the
floor, and (cMi⊙Mh

i , cMi⊙M j
i ) encode local canonical-

ized pose information. To achieve trajectory invariance, we
represent cMi as its residual relative to the previous frame
cM

−1
i−1 ⊙ cMi. Following standard practice, we incorpo-

rate additional redundant information, such as joint loca-
tions and foot contact labels, into our motion representation.

While our motion representation is similar to the canon-
icalization in [92], it differs in that [92] retains the kine-
matic chain and defines local joint rotations relative to par-
ent joints. Since all body joint information in our approach

is defined relative to the floor, it naturally facilitates bet-
ter reasoning about foot-floor contact. We validate the ef-
fectiveness of our motion representation through ablation
studies and demonstrate that while [92] exhibits significant
foot-floor penetration or floating artifacts, UniEgoMotion
produces high-quality motion.

G. EE4D-Motion Dataset

Training UniEgoMotion requires paired egocentric videos
and 3D human motion data within real-world environments.
However, capturing 3D human motion in everyday activ-
ity settings—such as kitchens, offices, and sports fields—is
challenging due to the cumbersome setup of motion cap-
ture systems. Existing large-scale 3D motion datasets [52,
57] lack paired egocentric videos, while most egocentric
datasets either lack 3D motion annotations [22, 23], are
small-scale [95], or have limited scene-motion correlation
and diversity [48, 99]. The Nymeria dataset [17] stands out
with 200+ hours of daily activity egocentric videos paired
with motion capture of simple skeleton sequences, but it
does not provide the standard SMPL motion representation.

To bridge this gap, we process the large-scale EgoExo4D
dataset [23] to generate pseudo-ground-truth 3D motion
data. We refer to this processed dataset as EE4D-Motion,
which consists of 208 hours of time-synchronized 3D mo-
tion data and egocentric videos, alongside other EgoExo4D
annotations. This dataset serves as an extensive benchmark
for multimodal motion research.

EgoExo4D Source Data
EgoExo4D provides synchronized egocentric and exocen-
tric video recordings of diverse activities, including cook-
ing, dance, sports, music, healthcare, and bike repair. Ego-
centric videos were captured using Project Aria glasses [15]
along with the 3D trajectory of the ego camera. While
EgoExo4D includes 3D body joint annotations for a sub-
set of the dataset, these annotations are sparse, noisy, dis-
continuous, and lack joint angle information, making them
unsuitable for motion tasks. Thus, we develop a processing
pipeline to fit the SMPL-X body model to the continuous
frames of EgoExo4D captures.

Fitting Pipeline
Our pipeline leverages off-the-shelf models for pose esti-
mation and follows a two-stage fitting approach [5, 52] to
obtain 3D-accurate motion groundtruth. We exclude rock
climbing sequences to focus on motions occurring on a flat
surface. Our pipeline consists of the following steps.
Detection & Tracking: We detect [51] and track the ego-
centric camera wearer in each exo view. When multiple
people are present, we use the Aria 3D trajectory to identify
the person of interest.
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Pose Estimation: For each bounding box, we estimate 2D
keypoints [91] and obtain an initial SMPL-X parameter es-
timate using an off-the-shelf HMR model [7]. However,
single-view HMR estimates suffer from depth ambiguity
and jitter in 3D translation.
Per-Frame Fitting: We initialize SMPL-X fitting by aver-
aging HMR estimates across exo views. The fitting opti-
mizes SMPL-X parameters (Rr, tr, θ, β) using the follow-
ing energy term [5]:

Lfitting = λθEθ(θ) + λβEβ(β)

+ λ2d

∑
v

σ
(
πv(J(R

r, tr, θ, β))−K2d
v

)
where Eθ and Eβ are priors for pose and shape, respec-
tively, J is the SMPL-X 3D joint regressor, πv is the 2D
projection operator using known camera intrinsics and ex-
trinsics of view v, K2d

v represents detected 2D joints, σ is
the robust Geman-McClure function [5, 19], and λ∗ are en-
ergy weights.
Sequence-Level Optimization: After per-frame fitting, we
refine results at the sequence level by fixing the body shape
β as the average across the sequence, incorporating egocen-
tric view detections, and adding a temporal jitter penalty to
enforce smooth motion.
Filtering & Quality Control: We filter out segments with
excessive jitter caused by erroneous device trajectories,
suboptimal off-the-shelf model predictions, or severe oc-
clusions across all exo views. After filtering, we retain
110 hours of smooth and accurate EE4D-Motion data for
UniEgoMotion training.

Through this pipeline, EE4D-Motion provides 3D-
accurate motion annotations aligned with egocentric video,
enabling us to train and evaluate UniEgoMotion model.

Motion Annotations Quality
EE4D-Motion annotations can be noisy in scenes with poor
exocentric visibility (e.g., kitchen, COVID testing) or large
camera distances (e.g., basketball). EgoExo4D’s own pose
annotations are sparse and jittery, resulting in high pose
error of ∼0.24m for EgoEgo, as reported by the authors
of EgoExo4D [23], compared to ∼0.16m on our smoother
and denser annotations. Unlike EgoEgo’s synthetic dataset,
where motions are scene-agnostic, EE4D-Motion provides
contextually grounded motion aligned with real-world en-
vironments, which is essential for both generation and fore-
casting tasks.
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